
UL HPC School 2017
PS6: Debugging, profiling and

performance analysis

UL High Performance Computing (HPC) Team

V. Plugaru

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu

1 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/
http://www.uni.lu
http://hpc.uni.lu
https://hpc.uni.lu/hpc-school/

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials

UL HPC School: http://hpc.uni.lu/hpc-school/

PS6 tutorial sources:
https://github.com/ULHPC/tutorials/tree/devel/advanced/debugging_profiling

2 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://github.com/ULHPC/
https://github.com/ULHPC/tutorials
http://hpc.uni.lu/hpc-school/
https://github.com/ULHPC/tutorials/tree/devel/advanced/debugging_profiling
https://hpc.uni.lu/hpc-school/

Introduction

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

3 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand + solve development & runtime problems

4 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand + solve development & runtime problems

During the session we will:
discuss what happens when an application runs out of
memory and how to discover how much memory it
actually requires.

see debugging tools that help you understand why your
code is crashing.

see profiling tools that show the bottlenecks of your
code - and how to improve it.

4 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand + solve development & runtime problems

During the session we will:
discuss what happens when an application runs out of
memory and how to discover how much memory it
actually requires.

see debugging tools that help you understand why your
code is crashing.

see profiling tools that show the bottlenecks of your
code - and how to improve it.

Knowing what to do when you experience a problem
is half the battle.

4 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

5 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (I)

Common tools used to understand problems

Do you know what time it is?
→֒ /usr/bin/time -v is just magic sometimes

Don’t remember where you put things?
→֒ Valgrind can help with your memory issues

Is your application firing on all cylinders?
→֒ with htop green means go! (red is bad)

Got stuck?
→֒ strace can tell you where you are and how you got there

Some times simple tools help you solve big issues.

6 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools - Allinea

Allinea DDT (part of Allinea Forge)
→֒ Visual debugger for C, C++ and Fortran threaded and // code

Allinea MAP (part of Allinea Forge)
→֒ Visual C/C++/Fortran profiler for high performance Linux code

Allinea Performance Reports
→֒ Application characterization tool

7 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools - Allinea

Allinea DDT (part of Allinea Forge)
→֒ Visual debugger for C, C++ and Fortran threaded and // code

Allinea MAP (part of Allinea Forge)
→֒ Visual C/C++/Fortran profiler for high performance Linux code

Allinea Performance Reports
→֒ Application characterization tool

Allinea tools are licensed

Make sure enough tokens available to profile/debug your code in the re-
quested configuration (#cores)!

→֒ license check can be integrated in common RJMS (is in SLURM)

→֒ ... so your jobs are able to wait for tokens to be available

7 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (III)

HPC specific tools - Intel

Intel Advisor
→֒ Vectorization + threading advisor: check blockers and opport.

Intel Inspector
→֒ Memory and thread debugger: check leaks/corrupt., data races

Intel Trace Analyzer and Collector
→֒ MPI communications profiler and analyzer: evaluate patterns

Intel VTune Amplifier
→֒ Performance profiler: CPU/FPU data, mem. + storage accesses

8 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (III)

HPC specific tools - Intel

Intel Advisor
→֒ Vectorization + threading advisor: check blockers and opport.

Intel Inspector
→֒ Memory and thread debugger: check leaks/corrupt., data races

Intel Trace Analyzer and Collector
→֒ MPI communications profiler and analyzer: evaluate patterns

Intel VTune Amplifier
→֒ Performance profiler: CPU/FPU data, mem. + storage accesses

Intel tools are licensed

All come as part of Intel Parallel Studio XE - Cluster edition!

8 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (IV)

HPC specific tools - Scalasca & friends

Scalasca
→֒ Study behavior of // apps. & identify optimization opport.

Score-P
→֒ Instrumentation tool for profiling, event tracing, online analysis.

Extra-P
→֒ Automatic performance modeling tool for // apps.

9 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

http://www.scalasca.org
http://www.vi-hps.org/projects/score-p/
http://www.scalasca.org/software/extra-p
http://www.vi-hps.org/tools
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Tools at your disposal (IV)

HPC specific tools - Scalasca & friends

Scalasca
→֒ Study behavior of // apps. & identify optimization opport.

Score-P
→֒ Instrumentation tool for profiling, event tracing, online analysis.

Extra-P
→֒ Automatic performance modeling tool for // apps.

Free and Open Source!
See other awesome tools at http://www.vi-hps.org/tools

9 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

http://www.scalasca.org
http://www.vi-hps.org/projects/score-p/
http://www.scalasca.org/software/extra-p
http://www.vi-hps.org/tools
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - highlights

DDT features

Parallel debugger: threads, OpenMP, MPI support
Controls processes and threads

→֒ step code, stop on var. changes, errors, breakpoints

Deep memory debugging
→֒ find memory leaks, dangling pointers, beyond-bounds access

C++ debugging – including STL
Fortran – including F90/F95/F2008 features
See vars/arrays across multiple processes
Integrated editing, building and VCS integration
Offline mode for non-interactive debugging

→֒ record application behavior and state

Full details at allinea.com/products/ddt/features

10 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

allinea.com/products/ddt/features
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - on ULHPC

Modules
On all clusters: module load tools/AllineaForge

Caution! May behave differently between:
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)

Debugging with DDT

11 Load toolchain, e.g. (for Intel C/C++/Fortran, MPI, MKL):
→֒ module load toolchain/intel

22 Compile your code, e.g. mpiicc $code.c -o $app

33 Run your code through DDT (GUI version)
→֒ iris: ddt srun ./$app

→֒ gaia/chaos: ddt mpirun -hostfile $OAR_NODEFILE ./$app

44 Run DDT in batch mode (no GUI, just report):
→֒ ddt --offline -o report.html --mem-debug=thorough

./$app

11 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea DDT - interface

12 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - highlights

MAP features

Meant to show developers where&why code is losing perf.
Parallel profiler, especially made for MPI applications
Effortless profiling

→֒ no code modifications needed, may not even need to recompile

Clear view of bottlenecks
→֒ in I/O, compute, thread or multi-process activity

Deep insight in CPU instructions affecting perf.
→֒ vectorization and memory bandwidth

Memory usage over time – see changes in memory footprint
Integrated editing and building as for DDT

Full details at allinea.com/products/map/features

13 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

allinea.com/products/map/features
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - on ULHPC

Modules
On all clusters: module load tools/AllineaForge

Caution! May behave differently between:
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)

Profiling with MAP

11 Load toolchain that built your app., e.g.
→֒ module load toolchain/intel

22 Run your code through MAP (attached, GUI version)
→֒ iris: map srun ./$app

→֒ gaia/chaos: map mpirun -hostfile $OAR_NODEFILE ./$app

33 Run MAP in batch mode (no GUI, create .map file):
→֒ iris: map --profile srun ./$app

14 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea MAP - interface

15 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - highlights

Performance Reports features

Meant to answer How well do your apps. exploit your hw.?
Easy to use, on unmodified applications

→֒ outputs HTML, text, CSV, JSON reports

One-glance view if application is:
→֒ well-optimized for the underlying hardware
→֒ running optimally at the given scale
→֒ affected by I/O, networking or threading bottlenecks

Easy to integrate with continuous testing
→֒ programatically improve performance by continuous profiling

Energy metric integrated
→֒ using RAPL (CPU) for now on iris
→֒ IPMI-based monitoring may be added later

Full details at allinea.com/products/allinea-performance-reports

16 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

allinea.com/products/allinea-performance-reports
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - on ULHPC

Modules
On all clusters: module load tools/AllineaReports

Caution! May behave differently between:
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)
→֒ Gaia: can collect GPU metrics
→֒ Iris: can collect energy metrics

Using Performance Reports

11 Load toolchain that you run your app. with, e.g.
→֒ module load toolchain/intel

22 Run your application through Perf. Reports
→֒ iris: perf-report srun ./$app

→֒ gaia/chaos: perf-report mpirun -hostfile $OAR_NODEFILE

./$app

33 Analysis by default in .html and .txt indicating also run config.

17 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - output (I)

18 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Allinea Perf. Reports - output (II)

19 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Intel Advisor - highlights

Advisor features

Vectorization Optimization and Thread Prototyping
Analyze vectorization opportunities

→֒ for code compiled either with Intel and GNU compilers
→֒ SIMD, AVX* (incl. AVX-512) instructions

Multiple data collection possibilities
→֒ loop iteration statistics
→֒ data dependencies
→֒ memory access patterns

Suitability report - predict max. speed-up
→֒ based on app. modeling

Full details at software.intel.com/en-us/intel-advisor-xe

20 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

software.intel.com/en-us/intel-advisor-xe
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Intel Advisor - on ULHPC

Modules

On iris/gaia/chaos: module load perf/Advisor

Using Intel Advisor

11 Load toolchain: module load toolchain/intel

22 Compile your code, e.g. mpiicc $code.c -o $app

33 Collect data e.g. on gaia:

mpirun -n 1 -gtool "advixe-cl -collect survey \

-project-dir ./advisortest:0" ./$app

44 Visualise results with advixe-gui $HOME/advisortest

21 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Intel Advisor - interface

22 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Scalasca & friends - highlights

Scalasca features

Scalable performance analysis toolset
→֒ for large scale // applications on 100.000s of cores

Support for C/C++/Fortran code with MPI, OpenMP, hybrid
3 stage workflow: instrument, measure, analyze

→֒ at compile time, run time and resp. postmortem

Score-P for instrumentation + measurement, Cube for vis.
→֒ Score-P can also be used with Periscope, Vampir and Tau

Facilities for measurement optimization to min. overhead
→֒ by selective recording, runtime filtering

Full details at http://www.scalasca.org/about/about.html

23 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

http://www.scalasca.org/about/about.html
https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Scalasca - on ULHPC

Modules

On iris/gaia/chaos:

module load perf/Scalasca perf/Score-P

Using Scalasca

11 Load toolchain: module load toolchain/foss

22 Compile your code, e.g. scorep mpicc $code.c -o $app

33 Collect data e.g. on gaia: scan -s mpirun -n 12 ./$app

44 Visualise results with square scorep_$app_12_sum

→֒ or generate text report: square -s scorep_$app_12_sum

→֒ . . . and print it: cat scorep_$app_12_sum/scorep.score

24 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Debugging and profiling tools

Scalasca visualisation with Cube-P

25 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

26 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

27 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.

27 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

27 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

But we do guarantee it’ll be /easier/ with these tools.

27 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
HPC oriented tools available for you on UL HPC

And now..

Short DEMO time!

28 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
HPC oriented tools available for you on UL HPC

And now..

Short DEMO time!

Your Turn!

28 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

https://hpc.uni.lu/hpc-school/

Conclusion

Hands-on start

We will first start with running HPCG (unmodified) as per:

http://ulhpc-tutorials.rtfd.io/en/latest/advanced/HPCG/

. . . your tasks:

11 perform a timed first run using unmodified HPCG v3.0 (MPI only)
X use /usr/bin/time -v to get details
X single node, use ≥ 80 80 80 for input params (hpcg.dat)

22 run HPCG (timed) through Allinea Perf. Report
X use perf-report (bonus points if using iris to get energy metrics)

33 instrument and measure HPCG execution with Scalasca

Remember: pre-existing reservations for the workshop:
→֒ ‘hpschool’: Iris cluster resv. (use --reservationname=hpcschool)
→֒ 4248619: Gaia cluster regular nodes (use -t inner=4248619)
→֒ 4248620: Gaia cluster GPU nodes
→֒ 1614176: Chaos cluster

29 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

http://ulhpc-tutorials.rtfd.io/en/latest/advanced/HPCG/
https://hpc.uni.lu/hpc-school/

Thank you for your attention...

Questions? http://hpc.uni.lu

High Performance Computing @ UL

Prof. Pascal Bouvry
Dr. Sebastien Varrette & the UL HPC Team
(V. Plugaru, S. Peter, H. Cartiaux & C. Parisot)

University of Luxembourg, Belval Campus
Maison du Nombre, 4th floor
2, avenue de l’Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Introduction

2 Debugging and profiling tools

3 Conclusion

30 / 30
V. Plugaru & UL HPC Team (University of Luxembourg) UL HPC School 2017/ PS6

N

http://hpc.uni.lu
mailto:hpc@uni.lu
https://hpc.uni.lu/hpc-school/

	Introduction
	Debugging and profiling tools
	Conclusion

